
Im Rahmen dieser Untersuchungen ist der Einfluß dieses Ionenbombardements auf die Grenzflächengestaltung analysiert worden. Die Ergebnisse der Untersuchungen zeigen, daß die kontinuierliche Prozeßführung und die Grenzflächenkonditionierung im PN-PVD-Hybridprozeß zur Haftfestigkeitssteigerung von Hartstoffschichten auf plasmanitrierten Substraten erfolgreich eingesetzt werden kann.

Die während des Plasmanitrierens auf der Substratoberfläche entstehende \(\text{Fe}_7\text{N} \)-Verbindungsschicht sollte aufgrund ihrer Härte von ca. 1100 HV 0,01 in das Werkstoffsystem integriert werden, da sie im Härtegradienten die Lücke zwischen Hartstoffschicht (ca. 2200 HV 0,01) und Diffusionszone (ca. 800 HV 0,1) schließt. Bei konventioneller, diskontinuierlicher Vorgehensweise muß diese Verbindungsschicht jedoch mechanisch entfernt werden, da es bisher nicht gelungen ist, eine Hartstoffschicht haftfest auf ihr abzuscheiden. SNMS-Tiefenprofile und transmissionselektronenmikroskopische Untersuchungen der Grenzfläche belegen, daß mittels des kontinuierlichen PN-Arc-PVD-Hybridverfahrens eine einphasige, porenfreie \(\text{Fe}_7\text{N} \)-Verbindungsschicht zwischen haftfester Hartstoffschicht und plasmanitriertem Substrat angeordnet werden kann, wenn sie durch ein hochenergetisches Ionenbombardement gezielt konditioniert wird.

Im Rahmen der Modellierung des kontinuierlichen PN-PVD-Hybridprozesses konnte aufbauend auf einer theoretischen Analyse nachgewiesen werden, daß der Konditionierungsprozeß über Stoßkaskaden im oberflächennahen Bereich zu einer Veränderung der Gitterstruktur des Substrats führt. Somit kann die zunächst hinsichtlich ihrer Gitterstruktur ungünstige \(\text{Fe}_7\text{N} \)-Verbindungsschicht über die Bildung einer Pseudodiffusionszone in das Werkstoffsystem integriert werden. Die sehr gute Anbindung der Hartstoffschicht auf dem plasmanitrierten Substrat ist durch die im Scratch-Test ermittelten kritischen Lasten von bis zu \(L_s = 70 \) N nachgewiesen worden.