Contents

List of Figures vii
List of Tables ix
List of Algorithms xi
List of Symbols and Abbreviations xiii

1 Introduction 1
 1.1 Background .. 1
 1.2 Motivation and Approach 2
 1.3 Relevance to Science and Practice 4

2 Logistics of Forwarding Agencies 7
 2.1 Information about the Freight Forwarding Industry 7
 2.2 Transport Networks, Terms and Facilities 9
 2.3 Planning Tasks and Problems 19

3 State of the Art of Science and Technology 23
 3.1 Technology and Traffic ... 23
 3.1.1 Retrieval and Forecast of Travel Time Data 24
 3.1.2 Existing Decision Support Systems 28
 3.2 Classification of Routing Problems 30
 3.2.1 Traveling Salesman Problem 30
 3.2.2 Vehicle Routing Problem 32
 3.2.3 Pickup and Delivery Problem 34
 3.2.4 A Priori Optimization 36
 3.2.5 Dynamic Optimization 39
 3.2.6 Interesting Concepts besides the Classical Routing 43
 3.3 Time Dependent Routing .. 44
 3.4 Dynamic Customer Orders 49
 3.5 Time Dependent and Dynamic Customers 54

4 Formulation of the Mathematical Optimization Model 57
 4.1 Optimization Task .. 57
Contents

4.2 Derivation of Performance Indicators .. 59
 4.2.1 Modification of the Degree of Dynamism: Travel Times 60
 4.2.2 Modification of the Degree of Dynamism: Quantity demanded . . 60
4.3 Mathematical Problem Formulation ... 61
 4.3.1 Integration of Time Dependent Travel Times 65
 4.3.2 Integration of Unknown Customer Orders 67

5 Development of an Integrated Solution Approach 69
 5.1 Profitability of Dynamic Routing .. 71
 5.2 Analysis of Appropriate Solution Concepts 73
 5.2.1 Column Generation ... 73
 5.2.2 Waiting Strategies ... 77
 5.2.3 Tabu Search ... 79
 5.3 Integration of Time Dependent Travel Times 81
 5.4 Clustering of Potential Customer Locations 87
 5.4.1 Anticipation Strategies ... 87
 5.4.2 Cluster Construction ... 89
 5.4.3 Developed Strategy and Implementation 92
 5.5 Combination of Time Dependent Travel Times and Customer Clusters . 96

6 Computational Experiments .. 101
 6.1 Data Preparation .. 101
 6.2 Computational Analysis of Developed Concept 104
 6.2.1 Experiments With Artificial Test Data 105
 6.2.2 Experiments With Operational Data 111

7 Conclusion ... 115
 7.1 Discussion of Results ... 115
 7.2 Future Research ... 117

Bibliography ... 119

A Appendix .. 133

Index .. 153
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>General approach to optimization problems</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Outline of the thesis</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Traffic development in Germany (Estimates as of 2010)</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>General structure of a less-than-truckload freight network</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Layout of an exemplary transshipment center</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Less-than-truckload freight network</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>Geographic segmentations of a short-distance service region</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>Simultaneous pickup and delivery routes inside the short-distance service region</td>
<td>19</td>
</tr>
<tr>
<td>2.7</td>
<td>Process chain in scheduling department of forwarding agencies</td>
<td>20</td>
</tr>
<tr>
<td>2.8</td>
<td>Nominal oil price from the years 1970 to 2006</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Travel time from point A to point B</td>
<td>25</td>
</tr>
<tr>
<td>3.2</td>
<td>Time dependent travel time from point A to point B</td>
<td>25</td>
</tr>
<tr>
<td>3.3</td>
<td>Step function (left side) and non step function (right side)</td>
<td>26</td>
</tr>
<tr>
<td>3.4</td>
<td>Basic road traffic diagram</td>
<td>28</td>
</tr>
<tr>
<td>3.5</td>
<td>Subtours (left side) and feasible solution (right side)</td>
<td>32</td>
</tr>
<tr>
<td>3.6</td>
<td>Static routes (left side) and routes with varying travel times (right side)</td>
<td>37</td>
</tr>
<tr>
<td>3.7</td>
<td>Static routes (left side) and real-time optimization with varying travel times (right side)</td>
<td>39</td>
</tr>
<tr>
<td>3.8</td>
<td>Degree of dynamism with response time</td>
<td>42</td>
</tr>
<tr>
<td>3.9</td>
<td>Optimization with time dependent travel times</td>
<td>45</td>
</tr>
<tr>
<td>3.10</td>
<td>Optimization with static (left side) and dynamic customer orders (right side)</td>
<td>50</td>
</tr>
<tr>
<td>3.11</td>
<td>Classification of dynamic models</td>
<td>54</td>
</tr>
<tr>
<td>4.1</td>
<td>Optimization with static (left side) and time dependent travel times (right side)</td>
<td>66</td>
</tr>
<tr>
<td>5.1</td>
<td>Research Concept (Kolb Cycle)</td>
<td>70</td>
</tr>
<tr>
<td>5.2</td>
<td>Exemplary branch-and-bound tree</td>
<td>75</td>
</tr>
<tr>
<td>5.3</td>
<td>Intelligent Planning System</td>
<td>82</td>
</tr>
<tr>
<td>5.4</td>
<td>Exemplary illustration of (smoothed) time zones</td>
<td>83</td>
</tr>
<tr>
<td>5.5</td>
<td>Number of traffic jams on all interstates over 168 hours (Monday to Sunday)</td>
<td>84</td>
</tr>
</tbody>
</table>
5.6 Travel times zones in North Rhine-Westphalia within 24 hours 85
5.7 Concept of fruitful regions ... 88
5.8 Static vs. real-time optimization with unknown customers 92
5.9 Customer clustering and implicit tour structure 93
5.10 Static vs. combined optimization with travel times and customers 97

6.1 Customer distributions of Solomon data sets 102
6.2 Results of static vs. time dependent optimization after tabu search ... 110
6.3 Customer distributions of operational data set i01 111
6.4 SWOT analysis of the developed approach 114

A.1 Travel time interval vs. travel time (Monday to Friday) 134
A.2 Number of traffic jams in 30 min for different reasons in 24 hours ... 134
A.3 Number of traffic jams in 30 min for other reasons in 24 hours 135
A.4 Number of traffic jams in 30 min on interstate A1 135
List of Tables

2.1 Turnover of the “top 10” LTL companies or co-operations 9
2.2 Time windows for loading and unloading operations 12
2.3 Common handling units in the LTL industry 16
2.4 Operating levels composing transport networks 17

3.1 Velocity definitions of data providers and a producer of navigation systems 24
3.2 Overview of exemplary features of route planning software 29
3.3 Classification of routing problems 36
3.4 Comparison of the PDP and the TDPDP 46
3.5 Comparison of time dependent approaches 49
3.6 Comparison of dynamic routing approaches 55

4.1 Attributes and parameter values ... 58

5.1 Static vs. dynamic optimization .. 72
5.2 Speed derivations of derived time zones 85

6.1 Corresponding time zones in a planning horizon of 230 units 103
6.2 Static (a) and time dependent (b) travel times (mR1) 106
6.3 Dynamic customers (c) and dynamic customers with clusters (d) (mR1) 106
6.4 Time dependent travel times and dynamic customers (e) and complete anticipation (f) (mR1) ... 107
6.5 Static (a) and time dependent travel times (b) (mR2) 107
6.6 Dynamic customers (c) and dynamic customers with clusters (d) (mR2) 108
6.7 Time dependent travel times and dynamic customers (e) and complete anticipation (f) (mR2) ... 108
6.8 Static (a) and time dependent travel times (b) (operational data) 112
6.9 Dynamic customers (c) and dynamic customers with clusters (d) (operational data) ... 113
6.10 Time dependent travel times and dynamic customers (e) and complete anticipation (f) (operational data) 113

A.1 Clusters (mR101d) ... 136
A.2 Information about clusters (mR101d) 136
A.3 Solomon instance R101 ... 137
A.4 Modified Solomon instances mR101 137
A.5 Characteristics of new instances for the PDP 137
A.6 Information about instances of type mR 138
A.7 Information about instances of type mC 138
A.8 Information about instances of type mRC 138
A.9 Result overview mR1 and mR2 139
A.10 Result overview mC1 and mC2 142
A.11 Static and time dependent travel times (mC1 and mC2) 145
A.12 Dynamic customers and dynamic customers with clusters (mC1 and mC2) 146
A.13 Time dependent travel times and dynamic customers and complete anticipation (mC1 and mC2) ... 146
A.14 Result overview mRC1 and mRC2 147
A.15 Static and time dependent travel times (mRC1 and mRC2) 149
A.16 Dynamic customers and dynamic customers with clusters (mRC1 and mRC2) 150
A.17 Time dependent travel times and dynamic customers and complete anticipation (mRC1 and mRC2) ... 150
A.18 Operational data set i01 ... 151
A.19 Industry instance and degree of dynamism 151
A.20 Industry instance and degree of dynamism with 600 customers 151
A.21 Result overview operational data 152
List of Algorithms

3.1 Tabu search algorithm .. 47

5.1 Computation of time dependent travel times 86
5.2 Agglomerative hierarchical clustering algorithm for the PDP 95
5.3 Construction of initial solution 98
5.4 Anticipatory tabu search for the PDP 99

A.1 General branch-and-bound algorithm 133